
Exam AZ-400: Designing and Implementing Microsoft

DevOps Solutions – Skills Measured

The English language version of this exam was updated on July 13, 2022. If a

localized version of this exam is available, it will be updated approximately 8

weeks after the English version is updated.

NOTE: Passing score: 700. Learn more about exam scores.

Audience Profile

DevOps engineers are developers or infrastructure administrators who also have subject matter

expertise in working with people, processes, and products to enable continuous delivery of value

in organizations.

Responsibilities for this role include designing and implementing strategies for collaboration,

code, infrastructure, source control, security, compliance, continuous integration, testing,

delivery, monitoring, and feedback.

DevOps engineers work on cross-functional teams that include developers, site reliability

engineers, and Azure administrators.

DevOps engineers must have experience with administering and developing in Azure, with

strong skills in at least one of these areas. They should be familiar with both Azure DevOps and

GitHub.

Skills Measured

NOTE: The bullets that follow each of the skills measured are intended to illustrate how we are

assessing that skill. Related topics may be covered in the exam.

NOTE: Most questions cover features that are general availability (GA). The exam may contain

questions on Preview features if those features are commonly used.

Configure processes and communications (10—15%)

Configure activity traceability and flow of work

• plan and implement a structure for the flow of work and feedback cycles

• identify appropriate metrics related to flow of work, such as cycle times, time to recovery,

and lead time

• integrate pipelines with work item tracking tools, such as Azure DevOps and GitHub

• implement traceability policies decided by development

• integrate a repository with Azure Boards

Configure collaboration and communication

• communicate actionable information by using custom dashboards in Azure DevOps

• document a project by using tools, such as wikis and process diagrams

• configure release documentation, including release notes and API documentation

• automate creation of documentation from Git history

• configure notifications by using webhooks

Design and implement source control (15—20%)

Design and implement a source control strategy

• design and implement an authentication strategy

• design a strategy for managing large files, including Git LFS and git-fat

• design a strategy for scaling and optimizing a Git repository, including Scalar and cross-

repository sharing

• implement workflow hooks

Plan and implement branching strategies for the source code

• design a branch strategy, including trunk-based, feature branch, and release branch

• design and implement a pull request workflow by using branch policies and branch

protections

• implement branch merging restrictions by using branch policies and branch protections

Configure and manage repositories

• integrate GitHub repositories with Azure Pipelines, one of the services in Azure DevOps

• configure permissions in the source control repository

• configure tags to organize the source control repository

• recover data by using Git commands

• purge data from source control

Design and implement build and release pipelines (40—45%)

Design and implement pipeline automation

• integrate pipelines with external tools, including dependency scanning, security

scanning, and code coverage

• design and implement quality and release gates, including security and governance

• design integration of automated tests into a pipeline

• design and implement a comprehensive testing strategy

• implement orchestration of tools, such as GitHub Actions and Azure Pipelines

Design and implement a package management strategy

• design a package management implementation that uses Azure Artifacts, GitHub

Packages, NuGet, and npm

• design and implement package feeds, including upstream sources

• design and implement a dependency versioning strategy for code assets and packages,

including semantic versioning and date-based

• design and implement a versioning strategy for pipeline artifacts

Design and implement pipelines

• select a deployment automation solution, including GitHub Actions and Azure Pipelines

• design and implement an agent infrastructure, including cost, tool selection, licenses,

connectivity, and maintainability

• develop and implement pipeline trigger rules

• develop pipelines, including classic and YAML

• design and implement a strategy for job execution order, including parallelism and

multi-stage

• develop complex pipeline scenarios, such as containerized agents and hybrid

• configure and manage self-hosted agents, including virtual machine (VM) templates and

containerization

• create reusable pipeline elements, including YAML templates, task groups, variables, and

variable groups

• design and implement checks and approvals by using YAML environments

Design and implement deployments

• design a deployment strategy, including blue/green, canary, ring, progressive exposure,

feature flags, and A/B testing

• design a pipeline to ensure reliable order of dependency deployments

• plan for minimizing downtime during deployments by using VIP swap, load balancer,

and rolling deployments

• design a hotfix path plan for responding to high-priority code fixes

• implement load balancing for deployment, including Azure Traffic Manager and the Web

Apps feature of Azure App Service

• implement feature flags by using Azure App Configuration Feature Manager

• implement application deployment by using containers, binary, and scripts

Design and implement infrastructure as code (IaC)

• recommend a configuration management technology for application infrastructure

• implement a configuration management strategy for application infrastructure, including

IaC

• define an IaC strategy, including source control and automation of testing and

deployment

• design and implement desired state configuration for environments, including Azure

Automation State Configuration, Azure Resource Manager, Bicep, and Azure Policy guest

configuration

Maintain pipelines

• monitor pipeline health, including failure rate, duration, and flaky tests

• optimize pipelines for cost, time, performance, and reliability

• analyze pipeline load to determine agent configuration and capacity

• design and implement a retention strategy for pipeline artifacts and dependencies

Develop a security and compliance plan (10—15%)

Design and implement a strategy for managing sensitive information in automation

• implement and manage service connections

• implement and manage personal access tokens

• implement and manage secrets, keys, and certificates by using Azure Key Vault, GitHub

secrets, and Azure Pipelines secrets

• design and implement a strategy for managing sensitive files during deployment

• design pipelines to prevent leakage of sensitive information

Automate security and compliance scanning

• automate analysis of source code by using GitHub code scanning, GitHub secrets

scanning, pipeline-based scans, and SonarQube

• automate security scanning, including container scanning and OWASP ZAP

• automate analysis of licensing, vulnerabilities, and versioning of open-source

components by using WhiteSource and GitHub Dependency Scanning

Implement an instrumentation strategy (10—15%)

Configure monitoring for a DevOps environment

• configure and integrate monitoring by using Azure Monitor

• configure and integrate with monitoring tools, such as Azure Monitor and Application

Insights

• manage access control to the monitoring platform

• configure alerts for pipeline events

Analyze metrics

• inspect distributed tracing by using Application Insights

• inspect application performance indicators

• inspect infrastructure performance indicators, including CPU, memory, disk, and network

• identify and monitor metrics for business value

• analyze usage metrics by using Application Insight

• interrogate logs using basic Kusto Query Language (KQL) queries

